Variational convergence of gradient flows and rate-independent evolutions in metric spaces
نویسندگان
چکیده
We study the asymptotic behaviour of families of gradient flows in a general metric setting, when the metric-dissipation potentials degenerate in the limit to a dissipation with linear growth. We present a general variational definition of BV solutions to metric evolutions, showing the different characterization of the solution in the absolutely continuous regime, on the singular Cantor part, and along the jump transitions. By using tools of metric analysis, BV functions and blow-up by time rescaling, we show that this variational notion is stable with respect to a wide class of perturbations involving energies, distances, and dissipation potentials. As a particular application, we show that BV solutions to rateindependent problems arise naturally as a limit of p-gradient flows, p > 1, when the exponents p converge to 1. Mathematics Subject Classification (2010). Primary 49Q20; Secondary 34A60.
منابع مشابه
Gradient Flows and Rate-independent Evolutions: a Variational Approach
The course will give a brief overview of the variational theory for gradient flows and rate-independent evolutions, trying to focus on the most important aspects: variational approximations, convergence results, energy-dissipation inequalities and metric characterization for gradient flows; energetic descriptions, BV solutions and optimal jump transitions, viscous approximations in the case of ...
متن کاملOn new faster fixed point iterative schemes for contraction operators and comparison of their rate of convergence in convex metric spaces
In this paper we present new iterative algorithms in convex metric spaces. We show that these iterative schemes are convergent to the fixed point of a single-valued contraction operator. Then we make the comparison of their rate of convergence. Additionally, numerical examples for these iteration processes are given.
متن کاملOn the Monotone Mappings in CAT(0) Spaces
In this paper, we first introduce a monotone mapping and its resolvent in general metric spaces.Then, we give two new iterative methods by combining the resolvent method with Halpern's iterative method and viscosity approximation method for finding a fixed point of monotone mappings and a solution of variational inequalities. We prove convergence theorems of the proposed iterations in ...
متن کاملVariational Level Set Segmentation in Riemannian Sobolev Spaces
Gradient flows in the Sobolev space H1 have been shown to enjoy favorable regularity properties. We propose a generalization of prior approaches for Sobolev active contour segmentation by changing the notion of distance in the Sobolev space, which is achieved through treatment of the function and its derivative in Riemannian manifolds. The resulting generalized Riemannian Sobolev space provides...
متن کاملGradient Flows on Nonpositively Curved Metric Spaces and Harmonic Maps
The notion of gradient flows is generalized to a metric space setting without any linear structure. The metric spaces considered are a generalization of Hilbert spaces, and the properties of such metric spaces are used to set up a finite-difference scheme of variational form. The proof of the Crandall–Liggett generation theorem is adapted to show convergence. The resulting flow generates a stro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012